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Abstract
This paper estimates the moderating effect of soil organic carbon content (a measure 
of soil health) on child health in response to rainfall shocks in a low-income coun-
try setting. Focusing on rural India, I leverage the Demographic and Health Survey 
data set and high-resolution spatial data on soil organic carbon content and meteoro-
logical variables. The results show that a high level of soil organic carbon signifi-
cantly reduces the negative impact of rainfall shock on children’s weight-for-height 
z-scores, but not on height-for-age z-scores.
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Introduction

India consistently ranks low on the global hunger index, according to four indica-
tors: malnutrition prevalence, child wasting (a measure of short-term inadequate 
nutrition), child stunting (a measure of long-term inadequate nutrition), and under-
five mortality (Wiesmann, 2006). Many of India’s villages in 2016 showed alarming 
levels of anthropometric measurements in children (Kim et al., 2021). According to 
the 2015–2016 India Demographic and Health Survey, 38% of children under the 
age of 5 are stunted (too short for their age) and 21% of children under the age of 5 
are wasted (too thin for their height). Indian agricultural production is vulnerable to 
climate change and, without effective adaptation, can reduce food crop yields in the 
future by up to 9% (Guiteras, 2009). Moreover, in India’s recent past, shortages of 
staple food crops, wheat and rice are associated with severe droughts and extreme 
rainfall (Zaveri & Lobell, 2019; Auffhammer et al., 2012). Child nutrition and agri-
cultural production in rural areas in the developing world are closely linked (Webb 
& Block, 2012). Bakhtsiyarava and Grace (2021) in Ethiopia demonstrated that 
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more diversity in agricultural production during periods of low rainfall can reduce 
the risk of chronic food insecurity among children.

Food shortages caused by crop failures due to extreme weather conditions, and 
the resulting nutritional deprivation can negatively impact children’s health (Grace 
et al., 2012). Improved soil quality as measured by soil organic carbon (SOC), com-
monly used in the literature, increases agricultural production (Lal, 2006). Because 
of the water holding capacity, a high level of SOC offers long-term drought resist-
ance and reduces the frequency of crop failures (Huang et  al., 2021; Kane et  al., 
2021). SOC also provides agricultural profits for small landowners in developing 
countries (Bhargava et al., 2018). My research asks if SOC affects children’s nutri-
tion and health in a low-income country. Then, I explore to what extent SOC offers 
resilience during periods of low rainfall.

This article examines whether natural variation in soil organic carbon levels 
mitigates the impact of non-linear weather variables by crop growth on children’s 
health. Focusing on rural India, I leverage the 2015 Demographic and Health Survey 
dataset and high-resolution spatial data on soil organic carbon content and mete-
orological variables. Following Bakhtsiyarava and Grace (2021), I evaluate the 
variation in anthropometric measurements, height-for-age (HAZ), and weight-for-
height z-scores (WHZ) to measure child malnutrition in India. Inadequate nutrition 
can cause childhood stunting (if HAZ is below 2 standard deviation) and wasting 
(if WHZ is below 2 standard deviation). Unlike stunting, wasting may be reversed 
by increasing nutritional intake (Victora, 1992). In this study, I focus on HAZ and 
WHZ scores to measure malnutrition linked to weather-induced food insecurity.

While the exact relationship between soil quality and crop production under 
dry conditions is complex and multidimensional. Huang et  al. (2021) and Kane 
et al. (2021) in the USA show that a higher soil organic carbon content can mod-
erate the impact of weather shocks by retaining soil water in the agricultural sys-
tems. Children’s nutrition also depends on food quality, which is partly dependent 
on soil micro-nutrients (Berkhout et al., 2019; Kim & Bevis, 2019). Berkhout et al. 
(2019), based on their study in Sub-Saharan Africa, highlight the importance of soil 
micro-nutrients such as zinc, copper, and manganese in reducing the malnutrition in 
children.

This article is informed and contributes to two main strands of the literature: the 
first is the relationship between soil agronomy and climate; the second is the rela-
tionship between children’s health and SOC. While there are studies that examine 
the impact of climate on children’s health in India (e.g., Dimitrova and Muttarak 
(2020) and McMahon and Gray (2021)), these studies have overlooked the impor-
tance of soil health. In this article, I contribute to the literature by demonstrating 
the direct and indirect effects of SOC. By enhancing the SOC, households would 
have access to greater food availability that could support children’s nutrition and 
health. This is a direct result of SOC. The SOC may also help mitigate the impact of 
adverse weather conditions on food quantity. This is an indirect effect of SOC.

The results show that a high level of soil organic carbon significantly reduces the 
negative impact of rainfall shock on children’s weight-for-height z-scores, but not on 
height-for-age z-scores. I also explore heterogeneity in children’s health outcomes by 
gender, household wealth index and land ownership, and climate zone. This suggests 
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that efforts to improve soil quality should be adjusted to address these heterogeneous 
impacts. The results of the paper provide new evidence and inform policy-makers on 
the impact of high organic carbon in soils on children’s health.

Conceptual framework

Figure  1 depicts a simple conceptual connection between soil health and childhood 
nutrition. The figure can be used to examine the impact of a rainfall shock with dif-
ferent levels of SOC. Because periods of low precipitation reduce crop yields, food 
shortages affect food intake and thus nutrition (Grace et al., 2012). Higher SOC lev-
els increase in agricultural production, particularly during a drought (Lal, 2006), which 
contributes to food availability and supports nutrition through consumption of output 
and income from crop sales that can be used to purchase food. Because of the water 
holding capacity, a high level of SOC offers long-term drought resistance and reduces 
the frequency of crop failures (Huang et al., 2021; Kane et al., 2021). This reduction 
in crop failure increases agricultural income overall (Bhargava et  al., 2018) and can 
thus contribute to food security and nutrition for children by providing an extra cushion 
against shocks.

Furthermore, the level of education of the mother, the gender of the child, and 
the wealth of the household can also influence the nutrition of the children (Almond 
& Currie, 2011). Moreover, SOC mitigation effects may vary depending on climate 
regions and the ability of households to cope with rain shocks. Later in the “Results” 
section, I estimate the heterogeneity in children’s health outcomes by region, climate 
zone, gender, household wealth, and land ownership. Also, there may be unobserved 
covariates which may be correlated with children’s nutrition and soil organic carbon 
levels and therefore may bias my results downwards.

Fig. 1  A simple conceptual 
relationship between soil and 
children’s health
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Data and descriptive statistics

To demonstrate how soil organic carbon levels moderate the effect of monsoon 
activity on the health of Indian children, I leverage the Demographic and Health 
Survey dataset and high-resolution spatial data on soil organic carbon levels and 
weather variables.

Demographic and health data

I use the cross-sectional data from the fourth round of the Demographic and Health 
Survey (DHS) for India collected in 2015–2016. DHS uses a multi-stage stratified 
sampling design, with enumeration areas, hereinafter referred to as clusters (equiva-
lent to census villages), being the smallest unit. In the clusters, households are ran-
domly selected to be interviewed. DHS also collects the GPS locations of each clus-
ter, enabling researchers to link DHS dataset to other geo-coded data, including soil 
organic carbon levels, precipitation, and temperature, at the cluster level. In order to 
preserve the anonymity of the villages, DHS randomly displaces the GPS coordi-
nates of clusters up to 2 km in urban areas and up to 5 km in rural areas, and 1% of 
rural clusters are further displaced up to 10 Km. This displacement introduces meas-
urement errors and may bias my results downwards.

A total of 131 of the 28,526 geo-referenced clusters did not have information and 
were dropped. I extracted environmental data using the DHS geo-referenced cluster 
for a 10-km buffer.1

DHS has a nationwide representative sample of children. In my analysis, the 
sample size for children aged 0 to 4 years was 259,627; 34,625 observations were 
excluded from the child data file that contained missing or invalid data. Invalid cases 
include children over plausible limits, age over plausible limits, and flagged cases. 
Additionally, observations with invalid woman’s body mass index (BMI) informa-
tion (636 observations), missing data (6447 observation) on caste, and not useful 
information (929 observations had “don’t know” on caste) were excluded. Fur-
thermore, I restrict the sample to focus exclusively on rural parts of the country as 
defined in the DHS dataset. To sum up, I analyzed a sample of 169,904 rural Indian 
children.

Rainfall data

I draw monthly rainfall data from Climate Hazards Group Infrared Precipitation 
(CHIRPS) using DHS cluster geocordinates. CHIRPS is a quasi-global that extends 
over 50 S-50 N, with a gridded resolution of 0.05 degrees, from 1981 to near-real 
time precipitation time series (Funk et al., 2014).

1 As a sensitivity test, I run every analysis for a 20-km buffer. Appendix Table  14 reports the main 
results.
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There is not much guidance available in the literature about defining rain shock. 
For my purpose, I need to define a rainfall shock based on a threshold that lowers 
yields on India’s major crops. Therefore, like Feeny et al. (2021), I adopt an empir-
ical strategy to determine the threshold. Using data from the International Crops 
Research Institute for the Semi-Arid Tropic (ICRISAT), I regress the natural log of 
the annual crop yield (kg per hectare) from 2001 to 2015 on rainfall deciles control-
ling for year and district fixed effects.2 The unit of analysis for the yield data is the 
district-year. As shown in Fig. 2, results indicate that rainfall below the 20th percen-
tile reduces crop yield of grains and pulses in India.3

Additionally, I also check the moderating effects of high SOC on crop yields. I 
interact with rainfall deciles and high SOC levels. The absolute impact of a high 
level of SOC is not statistically significant. But, the terms of interaction between 
precipitation deciles and high SOC are statistically significant for rainfall deciles 1 
and 7. The results suggest that SOC moderated the impact of fluctuations in precipi-
tation on yields in my analysis. Appendix Table 5 reports the results.

I define rain shock as a monsoon rain that is below the 20th percentile of the 
long-term historical mean within the DHS cluster (Shah & Steinberg, 2017).4

Fig. 2  Coefficient for rainfall deciles and 95% CI in India. The dependent variable is the natural loga-
rithm of annual crop yield (kg per hectare) from 2001 to 2015. The specification includes district and 
year fixed effects. The 5th decile is selected as reference

2 Crop yield data (unapportioned) are available at http:// data. icris at. org/ dld/ index. html.
3 In the Appendix, Fig. 6, I also show the negative effects of lower precipitation on selected staple and 
cash crops. Corn, soybeans, and cotton appear to differ and not increase monotonously with precipitation, 
suggesting a non-linear response to weather conditions in some field crops.
4 India receives the majority of its rainfall during the monsoon from June to September.

http://data.icrisat.org/dld/index.html
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I used a measure of rainfall shock, which has already been used in the literature 
(Feeny et al., 2021; Dinkelman, 2017). Following Dinkelman (2017), I calculate the 
fraction of shocks:

where the subscripts i represent every child in the sample living in clusters j. By 
using the shock fraction, I capture the variation in the rain shock specific to the child 
living in the clusters.

A child under the age of 5 years may be exposed to one, many, or no monsoon 
rainfall shock; the fraction of shocks captures that intensity of shock. For example, 
if a child of age 3 was exposed twice to rainfall shocks over his or her lifetime, then 
the fraction of shocks for that child is given by 2/4. To measure the in-utero expo-
sure to rainfall shock, I used the birthyear of the individuals observed in the DHS 
data. Appendix 7 shows how the shock fraction is distributed.

To serve as a robustness check, I construct a population-weighted monthly rain 
measure based on gridded population data provided by the Center for International 
Earth Science Information Network (Center for International Earth Science Infor-
mation Network - CIESIN - Columbia University, 2018).5

Growing degree days

Daily temperature was sourced from Indian Monsoon Data Assimilation and Analy-
sis (IMDAA) reanalysis portal, managed by the National Centre for Medium Range 
Weather Forecasting (NCMRWF), India (Rani et  al., 2021). Reanalysis Data Service 
(RDS) is a regional atmospheric reanalysis over the Indian subcontinent at a high resolu-
tion 0.12 x 0.12 from 1979 to 2018.6 I have followed the formulation used in previous 
studies using meteorological measures which affect crop losses (Guiteras, 2009).7

Using the maximum and minimum daily temperature, the lower and upper thresh-
old for calculating growing degree days (GDD) during a growing season were set to 
8C and 32C, respectively.

Soil data

Soil organic carbon data were obtained from OpenLandMap (Hengl & Wheeler, 
2018).8 Global soil maps were produced based on machine learning predictions 

Fraction shocksij =
[child’s exposure to shocks in-utero through age 4]ij

(in-utero + child’s age)ij
.

5 For my analysis, I use a resolution of 2.5 arc-minute for the year 2015. Data is available at https:// 
sedac. ciesin. colum bia. edu/ data/ set/ gpw- v4- popul ation- count- rev11/ data- downl oad.
6 Available at https:// rds. ncmrwf. gov. in/ datas ets.
7 Following Guiteras (2009), I convert the daily mean temperature to GDD:

GDD(T)j =

⎧
⎪⎨⎪⎩

0, if T ≤ 8C

T − 8, if 8C < T ≤ 32C

24, if T ≥ 32C

8 Soil data are available at https:// www. openl andmap. org.

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11/data-download
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11/data-download
https://rds.ncmrwf.gov.in/datasets
https://www.openlandmap.org
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from global soil profile compilations at a resolution of 250  m. Following Huang 
et al. (2021), I extracted the mean soil organic carbon content around the DHS geo-
coded clusters at four standard depths: 0, 10, 30, and 60 cm. I then calculated the 
depth-weighted soil organic carbon content at 0–60 cm interval for the analysis.9

The literature does not provide clear information about the threshold for classify-
ing soil as high or low quality. Therefore, I have identified two categories of soil 
organic carbon content: low, below the 50th percentile, and high, above the 50th 
percentile.10

Figure 3 shows the soil organic carbon map for the rural DHS clusters. The miss-
ing area in the map indicates the null values for union territory Lakshadweep. Much 
of India is categorized as having low levels of soil organic carbon. The average soil 

Fig. 3  The dots represent the average soil organic carbon content of the DHS rural clusters in India. The 
missing in the map indicates the null values for union territory Lakshadweep. The dark lines in the back-
ground are the district borders

9 Following Huang et  al. (2021), I used the trapezoidal rule to estimate the depth-weighted 0–60  cm 
interval:

(S0−60cm)j =

(
[(S0 + S10) ∗ 10 ∗ 0.5] + [(S10 + S30) ∗ 20 ∗ 0.5] + [(S30 + S60) ∗ 30 ∗ 0.5]

60

)

j

10 I also perform the sensitivity test for different threshold values such as 25th and 75th percentile of 
high soil organic carbon. Appendix Tables 12 and 13 report the results.
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organic carbon concentration is 0.945 %(g/kg). Coastal regions in the west and east, 
most in the northeast and central plains are characterized by moderate to high soil 
carbon levels. Also, to explore what determines SOC variation, I do the Pearson 
correlation coefficient test between soil organic carbon and the historical enhanced 
vegetation index.11 The Pearson coefficient of correlation between these two vari-
ables is 0.38 (p-val = 0.000).

Descriptive statistics

Anthropometric data or body measurements for children, such as weight-for-age and 
weight-for-height, are taken and compared to a table in the World Health Organi-
zation (WHO) Child Growth Standards to calculate z-scores (WHO, 2006). The 
WHO Child Growth Standards are based on a sample of children from six coun-
tries: Brazil, Ghana, India, Norway, Oman, and the USA. The z-score value can be 
either negative or positive depending on whether a child’s anthropometric measure-
ment is below or above the population average for the child’s age and sex. The chil-
dren in the sample have a negative value of z-scores, suggesting infants with low 
birth weight, on average. The distribution of each anthropometric measure within 
the sample differs for boys and girls. Among boys, the height-for-age is −1.597, the 
weight-for-age z is −1.602, and the weight-for-height is −1.017. In girls, the height-
for-age z-score is −1.516, the weight-for-age is −1.572, and the weight-for-height is 
−0.963.

Figure  4a and b show the distribution of height-for-age and weight-for-height 
z-scores of children under 5 years of age. The shaded portion in the figure shows 
the frequency indicating the absolute magnitude of child stunting and wasting. In 
my sample, approximately 41% of children are stunted and approximately 21% of 
children are wasted.

Fig. 4  Distribution of childhood health outcomes. Source: Own calculations based on DHS dataset 
(2015–2016)

11 I observe the enhanced vegetation index in the DHS dataset from 1985 to 2015 at 5-year intervals.
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Table  1 reports the summary statistics for the data used in this study.12 About 
11% of children were exposed to at least one rainfall shock in their birth year and 
in-utero. Children aged 2 to 4 are more exposed to cumulative shocks ranging from 
0.15 to 0.17. This means that children aged 2 to 4 may have been exposed to at least 
one rainfall shock in their lifetime. The average value of the fraction of shocks as an 
intensity measure is 0.13 (Table 7).

In my sample, the average age of children is 30 months. Fifty-one percent are 
boys, and 49% are girls. On average, mothers are 27 years of age, and approximately 
half of the women have a high school or higher education. A little over half the 
households have agricultural land. Just under a third of households have potable 
water lines, and a third have flush toilets. Twenty-three percent of families in my 
sample are poor. Appendix Table 8 presents summary statistics for all control vari-
ables used in this study.

12 Appendix Table 6 describes the variables included in the research.

Table 1  Summary statistics

The rain shocks for the 1st to the 4th year have different observations to adjust the age of the child. 
The sample is composed of 33,951 4-year-olds; 69,621 3-year-olds; 103,642 2-year-olds; 137,807 1-year-
olds; and 169,904 in-utero. Source: DHS and CHIRPS data

Observation Mean Std. dev.

Child health measures
Height-for-age z-score 169,904 −1.558 1.681
Weight-for-height z-score 169,904 −0.991 1.381
Rainfall below 20th percentile, yes=1
Rainfall shock - in-utero 169,904 0.110 0.313
Rainfall shock - birth year 169,904 0.110 0.312
Rainfall shock - 1st year 137,807 0.125 0.331
Rainfall shock - 2nd year 103,642 0.148 0.355
Rainfall shock - 3rd year 69,621 0.168 0.374
Rainfall shock - 4th year 33,951 0.167 0.373
Fraction of shocks 169,904 0.134 0.182
Soil health measure
Soil organic carbon (SOC) %(g/Kg) 169,897 0.945 0.675
25th percentile level of SOC 169,904 0.633
50th percentile level of SOC 169,904 0.733
75th percentile level of SOC 169,904 0.965
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Empirical framework

I estimate an OLS regression model to investigate the impact of high soil organic 
carbon levels on children’s nutrition and health and mitigate the negative impact of 
shocks on children’s health. The main specification is given by

where hij denotes child health outcomes measured by the height-for-age, weight-for-
age, and the weight-for-height z-scores for child i at the DHS cluster level, j; shockij 
represents the fraction of rain shocks experience by child i residing at DHS clus-
ter level, j; socj represents the mean soil organic carbon content at the DHS cluster 
level, j; Xi is a set of explanatory variables including child, mother, and household 
characteristics. Child characteristics include age, gender, and order of birth; mother 
characteristics include age, level of education, and diet; and household character-
istics include religion, social group, household income, and the wealth index (see 
Appendix Table 6 for a complete list of control variables); �d denotes district fixed 
effects and captures the time-invariant unobserved heterogeneity at the district level; 
�my denotes child birth year-month specific fixed effects and captures within cohort 
variations, and �ij denotes the disturbance terms. I cluster the standard errors at the 
level of DHS cluster (equivalent to Census village).

Additionally, I control precipitation and temperature derivatives (growth degree-
days and harmful degree-days) during a growing season (June through September) 
throughout a child’s life. f (�)ij is a non-linear function of precipitation and temperature. 
I followed Dimitrova and Muttarak (2020) to include a restricted cubic age spline, f (a)i 
with knots 6, 12, 18, 24, 36, and 48 months of age to control for non-linearity in chil-
dren’s growth trajectory. The key parameters are �1 , �2 , and �3 . �1 represents the impact 
of cumulative periods of low precipitation on children’s health; �2 represents the direct 
impact of a high level of SOC on children’s health; and �3 represents the mitigation 
effects of a high level of SOC during cumulative periods of low rainfall.

In this study, I assume the soil endowments are exogenous. Because any change 
in agriculture, including climate change, takes a long time to get reflected in the 
soil system (Lal, 2004). This can mean that investment in soil or soil degradation 
by intensive cropping may take a long time to be reflected in the soil system. Also, 
because of India’s low weather-induced internal migration rate (Viswanathan & 
Kumar, 2015). Because in my analysis, I look at short-term weather conditions on 
children’s nutrition and health. That is a plausible assumption.

There may be a potential threat to identification. Some regions may experience 
larger declines in soil organic carbon content than others, resulting in measurement 
errors. For example, in wheat fields, stubble burning is often done after harvest, 
which can disrupt the natural cycle of soil organic carbon replenishment. How-
ever, because of the invariant time measure of the soil, I am unable to capture this 
variation. Nevertheless, I take advantage of the coarsened exact matching method 
to estimate causal effects by reducing the covariate imbalance between treatment 
and control groups (Iacus et al., 2012). However, it may not circumvent the sample 

(1)
hij =�1shockij + �2socj + �3(shockij ∗ socj) + f (�)ij

+ �Xi + f (a)i + �d + �my + �ij
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selection problem. I present the results for the matched sample in the online supple-
ment section.

Results

Rainfall shocks, soil health, and child health

Table 2 presents impact of rainfall shock and soil health on children’s health. The 
OLS model takes into account the characteristics of the child, the mother, and the 
household. Moreover, the model controls a child’s lifetime exposure to rain and tem-
perature during a growing season. The model includes district and month and year 
of birth fixed effects. Standard errors are clustered at the DHS cluster level. Because 
the dependent variables (HAZ/WHZ scores) are measured as standard deviation, 
this is not a simple linear interpretation of a unit change in the exposure variable 
that results in a linear change in outcomes. The shock fraction shows a significant 
negative association with child WHZ. A one standard deviation increase in rainfall 
shock exposure above the child’s mean years of exposure implies that the child will 
have negative WHZ score of −0.029 ( −0.161*0.182). The standard deviation for the 
fraction of shocks is 0.182. A high level of SOC has no effect on children’s health at 
its main term, but substantially reduces the negative effect of the precipitation shock 

Table 2  Impact of high levels of 
SOC on the health of children

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust stand-
ard errors in parentheses are clustered at the DHS cluster level. 
Each regression includes district and month-birth year specific fixed 
effects. The high level of SOC is a dummy variable, 1 for the value 
above the 50th percentile of SOC and 0 otherwise. DHS controls 
include child, mother, and household level characteristics. Weather 
controls include non-linear transformation of precipitation and tem-
perature over child’s life time

HAZ WHZ

Fraction of shocks 0.058 −0.161***

(0.050) (0.042)
High SOC −0.011 −0.023

(0.018) (0.015)
High SOC × fraction of shocks −0.023 0.136**

(0.072) (0.059)
DHS controls Yes Yes
Weather controls Yes Yes
P-val: High SOC + high SOC × 

fraction of shocks = 0
0.611 0.036

Mean dependent. var. −1.558 −0.991
SD dependent var. 1.681 1.381
Observations 169,904 169,904
R-square 0.148 0.090
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by 13.6 percentage points. The interaction term between high SOC and fraction of 
shocks in the specification captures the moderating effect of a high soil quality on 
child health outcomes. A one standard deviation increase in rainfall shock exposure 
above the child’s average years of exposure in high SOC region leads to a positive 
WHZ score of 0.025 (0.136*0.182). This implies that high levels of SOC have a 
moderator effect of 3% ((−0.161+0.136)/−0.991 = 0.025). The mean WHZ score 
is −0.991. The p-value in the row shows the joint hypothesis test for high SOC and 
high SOC*fraction of shocks. The effect of a high and low level of SOC is statisti-
cally same for the child’s HAZ scores, but statistically different for the WHZ scores.

Figure 5 illustrates the predictive margins and average marginal effects of high 
SOC on HAZ and WHZ scores. Panels (a) and (b) show the predicted margins of 
HAZ and WHZ scores stratified by high and low SOC levels at each precipitation 
shock level. In panel (a), the predicted margins of the child’s HAZ scores are on an 
upward slope. This means that the predicted HAZ scores for a child living in both 
low and high SOC areas become less negative at high shock intensity. In contrast, 
in panel (b), the predicted margins of the child’s WHZ scores are declining. This 
means that the predicted WHZ scores for a child living in both low and high SOC 
areas become more negative. However, the magnitude of the predicted WHZ score 

Fig. 5  Predictive margins stratified by high and low SOC levels and average marginal effects of high 
SOC levels on HAZ and WHZ scores. Notes: a/b was derived by predicting HAZ/WHZ scores to speci-
fied precipitation shock values per high/low SOC level. c/d was obtained from a partial derivative of 
HAZ/WHZ scores with respect to high SOC. c and d are shaded with a 95% confidence interval
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is significantly smaller for a child living in a high SOC area. Panels (c) and (d) tell 
us the difference in HAZ and WHZ scores between high and low SOC groups at 
each precipitation shock level. The difference between low and high SOC areas is 
approximately zero for HAZ scores, while it is greater than zero for WHZ scores. 
This suggests that a high level of SOC significantly affects the child’s WHZ scores, 
but not the HAZ scores.

Next, there is a concern that soil organic carbon measurement may be con-
founded by other associated agronomic attributes. With SOC as the choice variable, 
it is difficult to remove concerns related to the omitted variable bias. Nevertheless, I 
approach this concern by including soil texture, slope, and vegetative index as con-
trol variables in Eq. 1.1314 In order to assess the influence of the different soil attrib-
utes used in this study on children’s health, I ran a correlation between child WHZ 
and soil attributes. This demonstrates no concern for multicollinearity in the model. 
Table 10 in the Appendix provides the correlation matrix for the soil attributes used 
in this study. Appendix Table 11 reports the results. It reads similar effects of high 
SOC on child health outcomes.

As a robustness check, I perform regressions on the matched sample after apply-
ing the matching algorithm (discussed in the online supplement) and on the pop-
ulation-weighted monthly rainfall measurements. Appendix Table  16 presents the 
results after applying the coarsened exact matching weights to the OLS model. The 
sign of the estimated coefficients is identical to that of the main results. However, 
the key coefficients are not significant at the 5% significance level in the matched 
sample. Next, Appendix Table 9, which uses the population-weighted monthly rain 
measures, reads similar effects on child health.

Heterogeneity

As mentioned earlier in the conceptual section, I use the subset of the sample to 
explore these heterogeneous effects of different climate zones, gender, and the 
household wealth index, common in the development and climate literature. I also 
explore the heterogeneous effect that soil health has on the health outcomes of chil-
dren in households with and without agricultural land. To check whether the differ-
ences between heterogeneous groups are statistically different, I perform a simple 
statistical test (two-sample t-test). The results suggest that the differences in mean 
HAZ/WHZ scores between groups differ statistically.

Heterogeneity by climate zone

The impact of soil organic carbon on children’s health can vary according to cli-
mate zones in India. Following Dimitrova and Bora (2020), I constructed six major 

13 I used OpenLandMap to extract clay, sand, and silt content in %(kg∕kg) at a depth of 60 cm in the 
DHS cluster (Hengl, 2018a, b, c).
14 I used the enhanced vegetation index for 2015 available in the DHS dataset as a proxy for agricultural 
output.
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climate zones at the district level based on the basis of the climate classification 
Köppen Geiger.15 They are tropical wet, tropical wet and dry, arid, semi-arid, humid 
sub-tropical, and mountainous. The Köppen classification map is based on local 
vegetation which, in turn, is based on local precipitation and temperature. The tropi-
cal rainforest and the tropical monsoon are reclassified as tropical humid, while the 
tropical savannah is reclassified as tropical humid and dry. The wet season in sum-
mer and the dry season in winter are the characteristics of the humid and dry tropi-
cal region. A one-way ANOVA test for average differences in HAZ/WHZ scores 
indicates a significant difference between different climate zones.16 Appendix Fig. 8 
shows the major climatic zones of India.

Heterogeneous effects across climate zones suggest that high SOC has a signif-
icant effect on children’s WHZ scores in semi-arid and humid sub-tropical areas. 
The impact of high SOC is larger in semi-arid areas. In contrast, cumulative pre-
cipitation shocks are positively associated with child WHZ scores in the wet and 
dry tropical climate area. This can be due to a reduction of diseases that are com-
mon during monsoon weather such as diarrhea and malaria. But this requires further 
research, and the results should be interpreted cautiously. The results do not suggest 
any impact of a high level of SOC on children’s HAZ scores in major but semi-arid 
climate zones. Table 3 summarizes the heterogeneous effects across climate zones.

Heterogeneity by gender

Next, I disaggregate the sample into boys and girls. There is evidence of gender 
discrimination in the literature in response to different types of household shocks, 
including environmental shocks. SOC may have no direct relationship to gender. But 
the moderating effect of a high level of SOC against crop failure contributes to chil-
dren’s food and nutritional security.

Table 4 presents the heterogeneous effects of rainfall shocks and soil health on 
children’s HAZ and WHZ scores by gender. Cumulative rain shock has a negative 
impact on girls’ and boys’ WHZ scores. Girls are more affected by rain shocks, 
as suggested by the larger coefficient. The point estimation is −0.205 for girls and  
−0.112 for boys. A high level of SOC mitigates the negative impact of precipita-
tion shock on girls’ WHZ scores, but not for boys. This implies that the nutrition of 
girls is addressed where resilience to climate-induced food insecurity exists through 
a high level of SOC. On the other hand, the results show no effect of a high level of 
SOC on children’s HAZ scores.

Heterogeneity by household wealth index

Household characteristics, such as household wealth, directly impact the resilience 
of households to absorb shocks, including environmental shocks. Poor households 
have less resilience than non-poor households. In the DHS dataset, I observe five 

16 See Appendix Table 15

15 I am grateful to Anna Dimitrova for sharing the data and code with me.
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different indices: the poorest, the poorer, the middle, the richer, and the richest. For 
my purpose, I code the poorest and the poorer as the poor and the middle, the richer, 
and the richest as the non-poor.

Table  4 presents the heterogeneous effects of rainfall shocks and soil health 
on children’s HAZ and WHZ scores by household wealth index, as defined in the 
DHS data. Unsurprisingly, the results indicate that poor households are negatively 
affected by precipitation shocks. The point estimate is −0.197 and significant at the 
5% significance level. Children WHZ scores in poor rural households are negatively 
impacted by rainfall shocks. A high level of SOC does not significantly reduce the 
adverse effect of the rainfall shock on poor households. The ability of rural house-
holds to influence SOC and directly benefit from high SOC may depend on their 

Table 3  Heterogeneity by selected climate zones

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. The high level of SOC is a dummy variable, 1 for the value above the 50th 
percentile of SOC and 0 otherwise. Each regression includes district and month-birth year specific fixed 
effects. All regressions include demographic controls, such as child, mother, and household level charac-
teristics, and weather controls. Arid and mountain are limited by very small sample to provide meaning-
ful estimates and hence excluded. A one-way ANOVA test for average differences in HAZ/WHZ scores 
indicates a significant difference between different climate zones (see Appendix Table 15)

HAZ

Tropical Tropical Semi Humid

wet wet and dry arid sub-tropical

Fraction of shocks −1.204 −0.167 0.130 0.062
(1.661) (0.167) (0.130) (0.061)

High SOC 0.451 −0.009 0.023 −0.031
(0.284) (0.029) (0.051) (0.027)

High SOC × fraction of shocks 1.084 0.175 −0.767** 0.052
(1.661) (0.183) (0.322) (0.094)

Mean dependent var. −1.258 −1.538 −1.516 −1.647
Observations 7036 40,607 25,517 86,254
R-square 0.146 0.130 0.144 0.160

WHZ
Tropical Tropical Semi Humid
wet wet and dry arid sub-tropical

Fraction of shocks −0.325 0.292** −0.280** −0.133***

(0.813) (0.139) (0.111) (0.051)
High SOC 0.314* 0.016 −0.054 −0.021

(0.175) (0.026) (0.041) (0.023)
High SOC × fraction of shocks 0.200 −0.416*** 0.547** 0.180**

(0.819) (0.153) (0.275) (0.075)
Mean dependent var. −0.861 −1.197 −1.025 −0.934
Observations 7036 40,607 25,517 86,254
R-square 0.079 0.075 0.072 0.093
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Table 4  Heterogeneity by individual and household characteristics

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clustered at 
the DHS cluster level. Each regression includes district and month-birth year specific fixed effects. The high 
level of SOC is a dummy variable, 1 for the value above the 50th percentile of SOC and 0 otherwise. DHS 
controls include child, mother, and household level characteristics. Weather controls include non-linear trans-
formation of precipitation and temperature over child’s life time. The difference in mean HAZ/WHZ scores 
by heterogeneous groups was obtained from a two-sample t-test with equal variances

Boys Girls

HAZ WHZ HAZ WHZ

Fraction of shocks 0.011 −0.112** 0.108 −0.205***

(0.065) (0.057) (0.067) (0.055)
High SOC −0.023 −0.005 0.003 −0.041**

(0.022) (0.020) (0.024) (0.020)
High SOC × fraction of shocks 0.022 0.110 −0.068 0.152**

(0.093) (0.079) (0.094) (0.077)
Mean dependent. var. −1.597 −1.017 −1.516 −0.963
Observations 87,643 87,643 82,259 82,259
R-square 0.142 0.096 0.165 0.093
Difference of average HAZ scores by gender −0.081∗∗∗

Difference of average HAZ scores by gender −0.054∗∗∗

Poor Non-poor
HAZ WHZ HAZ WHZ

Fraction of shocks 0.060 −0.197*** 0.056 −0.110*

(0.069) (0.056) (0.069) (0.060)
High SOC −0.000 −0.012 0.019 −0.029

(0.026) (0.022) (0.024) (0.020)
High SOC × fraction of shocks 0.002 0.114 −0.038 0.133*

(0.104) (0.081) (0.092) (0.080)
Mean dependent. var. −1.847 −1.135 −1.321 −0.873
Observations 76,633 76,633 93,259 93,259
R-square 0.128 0.088 0.137 0.090
Difference of average HAZ scores by wealth 0.525∗∗∗

Difference of average WHZ scores by wealth 0.262∗∗∗

Has ag. land Has no ag. land
HAZ WHZ HAZ WHZ

Fraction of shocks 0.083 −0.190*** 0.033 −0.110*

(0.063) (0.054) (0.075) (0.062)
High SOC −0.015 −0.025 −0.006 −0.012

(0.023) (0.020) (0.026) (0.021)
High SOC × fraction of shocks −0.112 0.119 0.089 0.132

(0.090) (0.076) (0.104) (0.083)
Mean dependent. var. −1.511 −0.976 −1.617 −1.009
Observations 94,065 94,065 75,838 75,838
R-square 0.152 0.100 0.153 0.089
Difference of average HAZ scores by landowner −0.106∗∗∗

Difference of average WHZ scores by landowner −0.033∗∗∗
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association with farms. I explore that in more detail in the next section by disaggre-
gating the sample by landowner.

Heterogeneity by land ownership

To show the relationship between SOC and landowners, I look at the heterogeneity by 
land ownership: has agricultural land and does not have agricultural land. Table 4 pre-
sents the results for households that own and do not own farmland. The results sug-
gest that rain shocks negatively affect households that own land, suggesting they are 
rain-dependent. However, a high level of SOC does not reduce the negative impact of 
rainfall shock on households that own land.

Conclusion

Summary

This paper examines the relationship between SOC and the impact of rainfall shocks on 
children’s health. Based on the conceptual framework developed in this paper, I examine 
the impact of rainfall shock with different levels of SOC. The results show that a high 
level of SOC significantly reduces the negative impact of rainfall shock on children’s 
WHZ scores in rural India. My findings are consistent with two separate literatures: (1) 
studies (e.g., Dimitrova and Muttarak (2020)) which show the negative impact of pre-
cipitation shock on children’s health and (2) studies (e.g., Berkhout et al. (2019)) that 
show the importance of soil quality in the reduction of malnutrition in low- and middle-
income countries. In this paper, I show a significant moderating effect of a high level 
of SOC offering resilience from the rainfall shock on short-term inadequate nutrition in 
rural areas of India. I find significant reduction in children’s negative WHZ scores and 
thus a resistance to child wasting during periods of low precipitation in a rain-fed farm-
ing country. However, I find no effect of a high level of SOC on children’s HAZ scores 
suggesting that a high SOC does not reduce chronic malnutrition among children.

Analyses of heterogeneous impacts suggest that high SOC significantly moder-
ates the precipitation shocks in semi-arid and humid sub-tropical climate zones. The 
results suggest that the nutrition of girl child is addressed in high level of SOC areas 
in response to rainfall shock. The results also suggest that a high level of SOC does 
not significantly mitigate the negative impact of rainfall shocks for children from poor 
households and farm landowners. One plausible reason of these results is that poor 
households and farm landowners in rural areas of India are characterized by a small 
landholding size (the average landholding in India is 1 ha), and therefore, we may not 
expect a stronger effect of a high SOC.

Limitation

A major limitation of this paper is that the soil organic carbon content variable 
used is time invariant. Existing research shows that agricultural practices that 
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cause pollution, such as stubble burning (Singh et  al., 2019) and fertilizer use 
(Brainerd & Menon, 2014), can have negative impacts on children’s health. These 
agricultural practices may also affect soil organic carbon concentrations, leading 
to endogeneity issues in the estimates. Due to a lack of data, I am unable to con-
trol for these agricultural practices and address the endogeneity problem.

Conclusions

Since it takes longer to reflect changes in soil organic carbon concentrations, pol-
icies may include both long-term and short-term measures. One long-term policy 
to enhance SOC would be to incentivize the adoption of agricultural best man-
agement practices. This can increase resilience to shocks over time, particularly 
as climate changes. Indian child development programs could be improved by 
considering the impact of climate change on the incidence of droughts and, con-
sequently, on children’s health.

In the short term, soil health in a region could be used to inform the likely 
impacts of precipitation shocks, which could better target relief efforts. Nutrition 
and soil conditions are linked to agriculture, and high soil quality contributes to 
reducing malnutrition, particularly during precipitation shocks. Therefore, there 
may be a greater need for food relief aid in low SOC areas.

Appendix A: Additional figures and tables

Fig. 6  Effects of monsoon rainfall on crop yields. Notes: The dependent variable is the natural logarithm 
of annual crop yield (kg per hectare) from 2001 to 2015. The specification includes district and year 
fixed effects. The figure plots the point estimate are plotted with 95% confidence intervals. The 5th decile 
is selected as reference. The monsoon rainfall deciles were constructed using monthly Climate Hazards 
Group InfraRed Precipitation (CHIRPS) data in a growing season (June through September) from year 
1982 to 2015 (Funk et al., 2014)
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Fig. 7  The distribution of fractional shocks

Fig. 8  Major climate zones in India based on Köppen Geiger climate classification
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Table 5  Moderating impacts of 
high SOC on crop yields

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust stand-
ard errors in parentheses are clustered at the district level. The depend-
ent variable is the natural logarithm of annual crop yield (kg per hec-
tare) from 2001 to 2015. The specification includes state and year fixed 
effects. SOC is continuous. The 5th decile is selected as reference

Cereal

SOC (%) 0.018
(0.020)

Rainfall decile 1 −0.129***

(0.029)
Rainfall decile 1 × SOC 0.038**

(0.018)
Rainfall decile 2 −0.051*

(0.027)
Rainfall decile 2 × SOC 0.010

(0.020)
Rainfall decile 3 −0.016

(0.024)
Rainfall decile 3 × SOC 0.004

(0.019)
Rainfall decile 4 −0.045

(0.030)
Rainfall decile 4 × SOC 0.034

(0.022)
Rainfall decile 6 −0.016

(0.025)
Rainfall decile 6 × SOC 0.015

(0.021)
Rainfall decile 7 −0.049

(0.031)
Rainfall decile 7 × SOC 0.060***

(0.023)
Rainfall decile 8 0.049**

(0.021)
Rainfall decile 8 × SOC −0.001

(0.020)
Rainfall decile 9 0.071**

(0.028)
Rainfall decile 9 × SOC −0.015

(0.026)
Rainfall decile 10 0.084***

(0.025)
Rainfall decile 10 × SOC −0.001

(0.019)
Observations 7091
Adjusted R2 0.460
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Table 6  Description for variables included in the study

Variable Description

Child-specific
bord Order of birth
malechild Dummy for male child
childsizelarge Dummy for child was large at birth
childsizeavg Dummy for child was average at birth
numfemalesib Number of female siblings
nummalesib Number of male siblings
age510 Dummy for child with sibling between the age 5 and 10 years
age1115 Dummy for child with sibling between the age 11 and 15 years
age16 Dummy for child with sibling above 16 years
hw1 Child’s age in months
Woman-specific
v012 Woman’s age in years
womanpriedu Dummy for woman has primary education
womansecedu Dummy for woman has secondary or higher level education
womanbmi Woman’s body mass index
womaneatfruits Dummy for woman consumes fruits daily or weekly
womaneatveges Dummy for woman consumes vegetables daily or weekly
womaneateggs Dummy for woman consumes eggs daily or weekly
womaneatmeat Dummy for woman consumes chicken/meat/fish daily or weekly
womansmoke Dummy for woman smokes
womandrink Dummy for woman drinks alcohol
womanprenataldoc Dummy for had prenatal care with doctor
Household-specific
v104 Years lived in place of residence
hv220 Age of household head in years
hhheadmale Dummy for male household head
hhhindu Dummy for household religion is Hinduism
hhmuslim Dummy for household religion is Islam
hhscst Dummy for household belongs to SC/ST
hhradio Dummy for household owns a radio/transistor
hhtv Dummy for household owns a television
hhrefri Dummy for household owns a refrigerator
hhmotorcycle Dummy for household owns a motorcycle
hhcar Dummy for household owns a car
hhelec Dummy for household has electricity
hv244 Dummy for household owns agricultural land
hhirragland Dummy for household irrigate agricultural land
sh52a Dummy for household owns cows/bulls/buffaloes
sh52b Dummy for household owns camels
sh52c Dummy for household owns horses/donkeys/mules
sh52d Dummy for household owns goats
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Table 6  (continued)

Variable Description

sh52e Dummy for household owns sheep
sh52f Dummy for household owns chickens/ducks
hhpipewater Dummy for source of drinking water: piped water
hhgroundwater Dummy for source of drinking water: ground water
hhsurfacewater Dummy for source of drinking water: surface water
hhrainwater Dummy for source of drinking water: rain water, tanker water, etc
hhflushtoilet Dummy for toilet facility: flush toilet
hhpit Dummy for toilet facility: pit toilet/latrine
hhnofacility Dummy for toilet facility: no facility/bush/field
hhpoorest Dummy for household wealth index: poorest
hhpoorer Dummy for household wealth index: poorer
hhmiddle Dummy for household wealth index: middle
hhricher Dummy for household wealth index: richer

For the analysis, hw1 was transformed with restricted cubic spline, and knots are placed at the interval of 
6, 12, 18, 24, 36, and 48

Table 7  Description for 
variables included in the study

For the analysis, childrain and childgdd were transformed by squar-
ing the variable; childhdd was transformed by taking a square root of 
the variable

Variable Description

Weather-specific
childrain June-September daily accumulation of 

rainfall over child’s life time
childgdd Growing degree days over child’s life time
childhdd Harmful degree days over child’s life time
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Table 8  Summary statistics (N = 169,904)

Mean Std. dev.

Child birth order number 2.343 1.521
Male child 0.516 0.500
Child with greater than average size at birth 0.165 0.371
Child with average size at birth 0.691 0.462
Number of female siblings 0.828 1.050
Number of male siblings 0.662 0.852
Number of child with sibling between the age 5 and 10 years 0.691 0.878
Number of child with sibling between the age 11 and 15 years 0.176 0.506
Number of child with sibling above 16 years 0.062 0.358
Child’s age in months 29.895 17.034
Woman’s age in years 27.079 5.178
Woman has primary edu 0.156 0.363
Woman has secondary or higher edu 0.494 0.500
Woman’s body mass index 20.775 3.465
Woman consumes fruits daily or weekly 0.333 0.471
Woman consumes vegetables daily or weekly 0.945 0.227
Woman consumes eggs daily or weekly 0.340 0.474
Woman consumes chicken/meat/fish daily or weekly 0.356 0.479
Woman smokes 0.007 0.084
Woman drinks alcohol 0.024 0.153
Access to prenatal care with doctor 0.361 0.480
Years lived in place of residence 15.460 25.387
Age of household head 44.360 15.216
Male household head 0.879 0.326
Household religion is Hinduism 0.744 0.436
Household religion is Islam 0.137 0.344
Household belongs to SC/ST 0.420 0.494
Household owns a radio/transistor 0.086 0.280
Household owns a television 0.495 0.500
Household owns a refrigerator 0.165 0.371
Household owns a motorcycle 0.311 0.463
Household owns a car 0.042 0.200
Household has electricity 0.814 0.389
Household owns ag. land 0.554 0.497
Irrigated ag land only 0.278 0.448
Household owns cows/bulls/buffaloes 0.523 0.499
Household owns camels 0.004 0.064
Household owns horses/donkeys/mules 0.007 0.086
Household owns goats 0.225 0.417
Household owns sheep 0.022 0.148
Household owns chickens/ducks 0.220 0.414
Source of drinking water: piped water 0.295 0.456
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Source: DHS and CHIRPS data

Table 8  (continued)

Mean Std. dev.

Source of drinking water: ground water 0.626 0.484
Source of drinking water: surface water 0.054 0.226
Toilet facility: flush toilet 0.337 0.473
Toilet facility: pit toilet/latrine 0.105 0.306
Toilet facility: no facility/bush/field 0.541 0.498
Wealth index: poorest 0.232 0.422
Wealth index: poorer 0.219 0.414
Wealth index: middle 0.200 0.400
Wealth index: richer 0.180 0.384

Table 9  Alternative main regression results using population-weighted rain measures

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. Each regression includes district and month-birth year specific fixed 
effects. The high SOC level is fixed above the 50th percentile. DHS controls include child, mother, and 
household level characteristics. Weather controls include non-linear transformation of precipitation and 
temperature over child’s life time

Full Matched

HAZ WHZ HAZ WHZ

Fraction of shocks 0.027 −0.143*** −0.016 −0.046
(0.050) (0.042) (0.062) (0.052)

High SOC −0.011 −0.020 −0.008 −0.021
(0.018) (0.015) (0.021) (0.018)

High SOC × fraction of shocks −0.017 0.102* −0.073 0.038
(0.072) (0.058) (0.089) (0.071)

DHS controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Mean dependent. var. −1.558 −0.991 −1.573 −1.059
SD dependent var. 1.681 1.381 1.667 1.366
Observations 169,904 169,904 102,296 102,296
R-square 0.148 0.090 0.144 0.079
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Table 10  Means, standard deviation, and Pearson correlation matrix for soil attributes (N = 169,897)

ap < .01 . EVI Enhanced Vegetation Index for 2015

Means SD WHZ SOC Clay Sand Silt EVI Slope

WHZ –0.99 1.38 1.00
SOC 0.94 0.67 0.12a 1.00
Clay 32.44 5.33 –0.09a –0.08a 1.00
Sand 38.18 5.58 0.02a 0.02a –0.57a 1.00
Silt 29.39 5.08 0.07a 0.06a –0.43a –0.50a 1.00
EVI 2927.33 702.22 0.10a 0.38a 0.02a –0.15a 0.14a 1.00
Slope 0.29 111.22 0.00 –0.25a 0.00 0.00 0.00 0.21a 1.00

Table 11  Robustness check: confounding variables included as controls

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. Each regression includes district and month-birth year specific fixed 
effects. The high SOC level is fixed above the 50th percentile. DHS controls include child, mother, and 
household level characteristics. Other controls include confounding variables such as soil texture, slope, 
and vegetation

Full Matched

HAZ WHZ HAZ WHZ

Fraction of shocks 0.056 −0.166*** 0.070 −0.152***

(0.050) (0.042) (0.063) (0.053)
High SOC −0.011 −0.023 −0.005 −0.016

(0.018) (0.016) (0.021) (0.018)
High SOC × fraction of shocks −0.022 0.135** −0.089 0.098

(0.072) (0.059) (0.090) (0.072)
DHS controls Yes Yes Yes Yes
Other controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Mean dependent. var. −1.558 −0.991 −1.572 −1.061
SD dependent var. 1.681 1.381 1.667 1.369
Observations 169,897 169,897 102,296 102,296
R-square 0.148 0.090 0.142 0.080
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Table 12  Sensitivity test for various thresholds: high soil organic carbon content above 25 percentile

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. Each regression includes district and month-birth year specific fixed 
effects. The high SOC level is fixed above the 25th percentile. DHS controls include child, mother, and 
household level characteristics. Weather controls include non-linear transformation of precipitation and 
temperature over child’s life time. The match summary consists of the following: the number of balanced 
matched observations is 40,129 for treatment and control, and the unmatched observation is 2354 out of 
42,483 for control and 87,292 out of 127,421 for treatment

Full Matched

HAZ WHZ HAZ WHZ

Fraction of shocks 0.153** −0.233*** 0.155** −0.214***

(0.063) (0.055) (0.067) (0.059)
High SOC 0.012 −0.026 0.016 −0.017

(0.022) (0.018) (0.027) (0.022)
High SOC × fraction of shocks −0.147** 0.186*** −0.233*** 0.151**

(0.072) (0.061) (0.086) (0.076)
DHS controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Mean dependent. var. −1.558 −0.991 −1.573 −1.059
SD dependent var. 1.681 1.381 1.667 1.366
Observations 169,904 169,904 80,253 80,253
R-square 0.148 0.090 0.145 0.094

Table 13  Sensitivity test for various thresholds: high soil organic carbon content above 75 percentile

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. Each regression includes district and month-birth year specific fixed 
effects. The high SOC level is fixed above the 75th percentile. DHS controls include child, mother, and 
household level characteristics. Weather controls include non-linear transformation of precipitation and 
temperature over child’s life time. The match summary consists of the following: the number of balanced 
matched observations is 22,749 for treatment and control, and the unmatched observation is 104,676 out 
of 127,425 for control and 19,730 out of 42,479 for treatment

Full Matched

HAZ WHZ HAZ WHZ

Fraction of shocks 0.048 −0.114*** 0.122 −0.091
(0.042) (0.037) (0.093) (0.080)

High SOC −0.015 −0.022 −0.022 −0.000
(0.028) (0.023) (0.034) (0.029)

High SOC × fraction of shocks −0.003 0.066 −0.122 −0.020
(0.085) (0.072) (0.124) (0.106)

DHS controls Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Mean dependent. var. −1.558 −0.991 −1.573 −1.059
SD dependent var. 1.681 1.381 1.667 1.366
Observations 169,904 169,904 45,498 45,498
R-square 0.148 0.090 0.145 0.094
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Table 14  Sensitivity test for different DHS cluster level: 20 km

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust standard errors in parentheses are clus-
tered at the DHS cluster level. The high SOC level is fixed above the 25th percentile. DHS controls 
include child, mother, and household level characteristics. Weather controls include non-linear transfor-
mation of precipitation and temperature over child’s life time. All regressions include district and month-
birth year specific fixed effects. The matching summary includes 40,129 matched out of 42,483 observa-
tions for control and 40,129 matched out of 127,421 for treated

(1) (2) (3) (4)
Full Full Full Matched

Fraction of shocks −0.241***
−0.242*** −0.260*** −0.229***

(0.054) (0.054) (0.055) (0.060)
High SOC −0.017 −0.023 −0.023 −0.008

(0.018) (0.018) (0.018) (0.022)
High SOC × fraction of shocks 0.129** 0.154** 0.163*** 0.109

(0.061) (0.061) (0.061) (0.076)
Marginal effects −0.144*** −0.127*** −0.137*** −0.174***

(0.034) (0.033) (0.034) (0.047)
Mean dependent variable −0.991 −1.075
Average years of exposure 0.133 0.150
DHS controls No Yes Yes Yes
Weather controls No No Yes Yes
Observations 169,904 169,904 169,904 80,254

Adjusted R2 0.067 0.086 0.086 0.068

Table 15  ANOVA test

A one-way ANOVA test was performed to test if there is a difference in the mean HAZ/WHZ scores 
between different climate zones

Sum of Degree of Mean square F Prob > F
square freedom

HAZ scores
Between groups 3108.95 5 621.79 221.46 0.000
Within groups 476230.63 169619 2.81
WHZ scores
Between groups 4316.99 5 863.40 458.79 0.000
Within groups 319203.80 169619 1.88
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Appendix B: Online supplement

The main idea of this paper was to use soil organic carbon (as a measure of 
soil health) as a moderator in response to rainfall shock. In the long run, the 
soil organic carbon may not be exogenous and may be correlated to an omitted 
variable, resulting in biased estimates. I take advantage of the coarsened exact 
matching method to estimate causal effects by reducing the covariate imbalance 
between treatment (high SOC region) and control (low SOC region) groups.

Matching methods

The coarsened exact matching method estimates the average effect of treatment 
on the treated sample (Blackwell et  al., 2009). I use data knowledge to search 
for a better match. The coarsened variables used were (a) child-specific (child’s 
birth order, child’s gender and age), (b) mother-specific (mother’s age and educa-
tion level), and (c) household-specific (religion, caste, source of drinking water, 
and toilet facility).17 I apply the software package, cem, created by Blackwell 
et  al. (2009) to calculate the weights, and these weights were used in a simple 

Table 16  Impact of high levels 
of SOC on the health of children

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust stand-
ard errors in parentheses are clustered at the DHS cluster level. 
Each regression includes district and month-birth year specific fixed 
effects. The matched weights, cem, are applied on all regressions. 
The high SOC level is fixed above the 50th percentile. DHS controls 
include child, mother, and household level characteristics. Weather 
controls include non-linear transformation of precipitation and tem-
perature over child’s life time

HAZ WHZ

Fraction of shocks 0.011 −0.063
(0.063) (0.053)

High SOC −0.008 −0.023
(0.021) (0.018)

High SOC × fraction of shocks −0.071 0.057
(0.089) (0.071)

DHS controls Yes Yes
Weather controls Yes Yes
Mean dependent. var −1.573 −1.059
SD dependent var 1.667 1.366
Observations 102,296 102,296
R-square 0.144 0.079

17 I also included the month of birth as part of the matching algorithm. I calculated if a child was born 
during the dry season (the first 6 months of the year) or the wet season (the last 6 months of the year). 
Then, I included that as an additional variable in the matching algorithm. Appendix Table 17 presents the 
results. It reads findings similar to those of the main specification.
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weighted regression. The cem command with a k2k option in STATA produces a 
match result which has the same number of treated and control in each matched 
strata by dropping the observations randomly. The treatment variable treat is 1 for 
high soil organic carbon content (in treatment group) and 0 for low soil organic 
carbon content (control group). Here is the summary of the match: the number 
of balanced matched observations is 51,148 for treatment and control, and the 
unmatched observation is 33,802 out of 84,950 for control and 33,806 out of 
84,954 for treatment.

The estimating equation is similar to the Eq. (1):

where the terms are defined same as the Eq. (1). I applied the package in STATA, 
cem, to compute the weights, and those weights were used in a simple weighted 
regression.

References

Almond, D., & Currie, J. (2011). Killing me softly: The fetal origins hypothesis. Journal of economic 
perspectives, 25(3), 153–72.

hij = �1shockij + �2socj + �3(shockij ∗ socj) + f (�)ij + �Xi + f (a)i + �d + �my + �ij,

Table 17  Including dry and 
rainy seasons as an additional 
variable in the matching 
algorithm

Levels of significance: p< 0.01∗∗∗ , p< 0.05∗∗ , p< 0.1∗ . Robust stand-
ard errors in parentheses are clustered at the DHS cluster level. 
Each regression includes district and month-birth year specific fixed 
effects. The matched weights, cem, are applied on all regressions. 
The high SOC level is fixed above the 50th percentile. DHS controls 
include child, mother, and household level characteristics. Weather 
controls include non-linear transformation of precipitation and tem-
perature over child’s life time. The match summary consists of the 
following: the number of balanced matched observations is 48,721 
for treatment and control, and the unmatched observation is 36,229 
out of 84,950 for control and 36,233 out of 84,954 for treatment

HAZ WHZ

Fraction of shocks 0.030 −0.102*

(0.063) (0.053)
High SOC −0.011 −0.016

(0.021) (0.018)
High SOC × fraction of shocks −0.072 0.036

(0.091) (0.072)
DHS controls Yes Yes
Weather controls Yes Yes
Mean dependent. var −1.580 −1.065
SD dependent var 1.665 1.366
Observations 97,441 97,441
R-square 0.147 0.080



 Population and Environment           (2023) 45:18 

1 3

   18  Page 30 of 31

Auffhammer, M., Ramanathan, V., & Vincent, J. R. (2012). Climate change, the monsoon, and rice 
yield in India. Climatic change, 111(2), 411–424.

Bakhtsiyarava, M., & Grace, K. (2021). Agricultural production diversity and child nutrition in Ethio-
pia. Food Security, 13(6), 1407–1422.

Berkhout, E. D., Malan, M., & Kram, T. (2019). Better soils for healthier lives? An econometric 
assessment of the link between soil nutrients and malnutrition in sub-saharan africa. PloS one, 
14(1), e0210642.

Bhargava, A. K., Vagen, T., & Gassner, A. (2018). Breaking ground: Unearthing the potential of high-
resolution, remote-sensing soil data in understanding agricultural profits and technology use in 
Sub-Saharan Africa. World Development, 105, 352–366.

Blackwell, M., Iacus, S., King, G., et al. (2009). cem: Coarsened exact matching in Stata. The Stata 
Journal, 9(4), 524–546.

Brainerd, E., & Menon, N. (2014). Seasonal effects of water quality: The hidden costs of the green 
revolution to infant and child health in India. Journal of Development Economics, 107, 49–64.

Center for International Earth Science Information Network - CIESIN - Columbia University. (2018). 
Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11. https:// 
doi. org/ 10. 7927/ H4JW8 BX5, place: Palisades, New York.

Dimitrova, A., & Bora, J. K. (2020). Monsoon weather and early childhood health in India. PLOS 
ONE, 15(4), e0231479. https:// doi. org/ 10. 1371/ journ al. pone. 02314 79, https:// dx. plos. org/ 10. 
1371/ journ al. pone. 02314 79

Dimitrova, A., & Muttarak, R. (2020). After the floods: Differential impacts of rainfall anomalies on 
child stunting in India. Global Environmental Change, 64(102), 130. https:// doi. org/ 10. 1016/j. 
gloen vcha. 2020. 102130, https:// www. linki nghub. elsev ier. com/ retri eve/ pii/ S0959 37802 03071 35

Dinkelman, T. (2017). Long-run health repercussions of drought shocks: Evidence from South Afri-
can homelands. The Economic Journal, 127(604), 1906–1939.

Feeny, S., Mishra, A., Trinh, T. A., et  al. (2021). Early-life exposure to rainfall shocks and gender 
gaps in employment: Findings from Vietnam. Journal of Economic Behavior & Organization, 
183, 533–554. https:// doi. org/ 10. 1016/j. jebo. 2021. 01. 016, https:// www. linki nghub. elsev ier. com/ 
retri eve/ pii/ S0167 26812 10002 75

Funk, C. C., Peterson, P. J., Landsfeld, M. F., et al. (2014). A quasi-global precipitation time series for 
drought monitoring. US Geological Survey data series, 832(4), 1–12.

Grace, K., Davenport, F., Funk, C., et al. (2012). Child malnutrition and climate in Sub-Saharan Africa: An 
analysis of recent trends in Kenya. Applied Geography, 35(1–2), 405–413. https:// doi. org/ 10. 1016/j. 
apgeog. 2012. 06. 017, https:// www. linki nghub. elsev ier. com/ retri eve/ pii/ S0143 62281 20007 68

Guiteras, R. (2009). The impact of climate change on Indian agriculture. Manuscript: Department of 
Economics, University of Maryland, College Park, Maryland.

Hengl, T. (2018a). Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 
250 m resolution. https:// doi. org/ 10. 5281/ zenodo. 25256 63

Hengl, T. (2018b). Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 
250 m resolution. https:// doi. org/ 10. 5281/ zenodo. 25256 62

Hengl, T. (2018c). Silt content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 
250 m resolution. https:// doi. org/ 10. 5281/ zenodo. 25256 76

Hengl, T., & Wheeler, I. (2018). Soil organic carbon content in x 5 g / kg at 6 standard depths (0, 10, 
30, 60, 100 and 200 cm) at 250 m resolution. https:// doi. org/ 10. 5281/ zenodo. 25255 53, https:// 
doi. org/ 10. 5281/ zenodo. 25255 53

Huang, J., Hartemink, A. E., & Kucharik, C. J. (2021). Soil-dependent responses of US crop yields to 
climate variability and depth to groundwater. Agricultural Systems, 190(103), 085. https:// doi. org/ 10. 
1016/j. agsy. 2021. 103085, https:// www. linki nghub. elsev ier. com/ retri eve/ pii/ S0308 521X2 10003 8X

Iacus, S. M., King, G., & Porro, G. (2012). Causal inference without balance checking: Coarsened 
exact matching. Political analysis, 20(1), 1–24.

Kane, D. A., Bradford, M. A., Fuller, E., et al. (2021). Soil organic matter protects US maize yields and 
lowers crop insurance payouts under drought. Environmental Research Letters, 16(4), 044018.

Kim, K., & Bevis, L. (2019). Soil fertility and poverty in developing countries. Choices, 34(2), 1–8.
Kim, R., Bijral, A. S., Xu, Y., et al. (2021). Precision mapping child undernutrition for nearly 600,000 

inhabited census villages in India. Proceedings of the National Academy of Sciences, 118(18), 
e2025865118. https:// doi. org/ 10. 1073/ pnas. 20258 65118, http:// www. pnas. org/ lookup/ doi/ 10. 1073/ 
pnas. 20258 65118

https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.1371/journal.pone.0231479
https://dx.plos.org/10.1371/journal.pone.0231479
https://dx.plos.org/10.1371/journal.pone.0231479
https://doi.org/10.1016/j.gloenvcha.2020.102130
https://doi.org/10.1016/j.gloenvcha.2020.102130
https://www.linkinghub.elsevier.com/retrieve/pii/S0959378020307135
https://doi.org/10.1016/j.jebo.2021.01.016
https://www.linkinghub.elsevier.com/retrieve/pii/S0167268121000275
https://www.linkinghub.elsevier.com/retrieve/pii/S0167268121000275
https://doi.org/10.1016/j.apgeog.2012.06.017
https://doi.org/10.1016/j.apgeog.2012.06.017
https://www.linkinghub.elsevier.com/retrieve/pii/S0143622812000768
https://doi.org/10.5281/zenodo.2525663
https://doi.org/10.5281/zenodo.2525662
https://doi.org/10.5281/zenodo.2525676
https://doi.org/10.5281/zenodo.2525553
https://doi.org/10.5281/zenodo.2525553
https://doi.org/10.5281/zenodo.2525553
https://doi.org/10.1016/j.agsy.2021.103085
https://doi.org/10.1016/j.agsy.2021.103085
https://www.linkinghub.elsevier.com/retrieve/pii/S0308521X2100038X
https://doi.org/10.1073/pnas.2025865118
http://www.pnas.org/lookup/doi/10.1073/pnas.2025865118
http://www.pnas.org/lookup/doi/10.1073/pnas.2025865118


1 3

Population and Environment           (2023) 45:18  Page 31 of 31    18 

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 
304(5677), 1623–1627.

Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic 
carbon pool in agricultural lands. Land degradation & development, 17(2), 197–209.

McMahon, K., & Gray, C. (2021). Climate change, social vulnerability and child nutrition in South Asia. 
Global Environmental Change, 71(102), 414.

Rani, S. I., Arulalan, T., George, J. P., et al. (2021). IMDAA: High-resolution satellite-era reanalysis for 
the Indian monsoon region. Journal of Climate, 34(12), 5109–5133.

Shah, M., & Steinberg, B. M. (2017). Drought of opportunities: Contemporaneous and long-term 
impacts of rainfall shocks on human capital. Journal of Political Economy, 125(2), 527–561.

Singh, P., Dey, S., Chowdhury, S., et al. (2019). Early life exposure to outdoor air pollution: Effect on 
child health in India. Brookings India. http:// hdl. handle. net/ 11540/ 9783

Victora, C. G. (1992). The association between wasting and stunting: An international perspective. 
The Journal of nutrition, 122(5), 1105–1110.

Viswanathan, B., & Kumar, K. K. (2015). Weather, agriculture and rural migration: Evidence from 
state and district level migration in India. Environment and Development Economics, 20(4), 
469–492.

Webb, P., & Block, S. (2012). Support for agriculture during economic transformation: Impacts on pov-
erty and undernutrition. Proceedings of the National Academy of Sciences 109(31):12,309–12,314. 
https:// doi. org/ 10. 1073/ pnas. 09133 34108, http:// www. pnas. org/ cgi/ doi/ 10. 1073/ pnas. 09133 34108

WHO. (2006). Reliability of anthropometric measurements in the WHO Multicentre Growth Reference 
Study. Acta Paediatrica, 95, 38–46.

Wiesmann, D. (2006). A global hunger index measurement concept, ranking of countries, and trends. 
FCND discussion paper ; 212, International food policy research institute (IFPRI). Food consump-
tion and nutrition division (FCND), Washington, DC.

Zaveri, E., & Lobell, B. D. (2019). The role of irrigation in changing wheat yields and heat sensitivity in 
India. Nature communications, 10(1), 1–7.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

http://hdl.handle.net/11540/9783
https://doi.org/10.1073/pnas.0913334108
http://www.pnas.org/cgi/doi/10.1073/pnas.0913334108

	Rainfall shocks, soil health, and child health outcomes
	Abstract
	Introduction
	Conceptual framework
	Data and descriptive statistics
	Demographic and health data
	Rainfall data
	Growing degree days
	Soil data
	Descriptive statistics

	Empirical framework
	Results
	Rainfall shocks, soil health, and child health
	Heterogeneity
	Heterogeneity by climate zone
	Heterogeneity by gender
	Heterogeneity by household wealth index
	Heterogeneity by land ownership


	Conclusion
	Summary
	Limitation
	Conclusions

	Appendix A: Additional figures and tables
	Appendix B: Online supplement
	Matching methods

	References


