Public workfare programs as agricultural insurance: Evidence from rural India, 2004-2012

Siddharth Kishore

Advisor: Dr. Dale Manning
Graduate Student Seminar
Department of Agricultural and Resource From

Department of Agricultural and Resource Economics Colorado State University

November 19, 2021

Motivation

- The incidence of droughts is frequent and heat waves last longer. Plot Drought
- Extended dry periods cause crops to fail. Staple crops

 Cash crops
- Market based insurance solutions are underdeveloped in developing countries.

Public workfare programs as agricultural insurance

- National Rural Employment Guarantee (NREG) scheme, 2005
 - 100 days of minimum wage paid public employment per fiscal year for all households in rural India.
 - Public projects such as road construction, and micro-irrigation ditches.
- NREG scheme was rolled in three phases.
- Workfare programs used largely as an outside option in rural areas. Plot Persondays 2006-10
- Research question: Can workfare programs serve as a substitute for weather insurance in rural areas of developing countries?

Relationship to previous work

- Higher temperature negatively affects crop yields (Schlenker and Robert, 2009)
- Weather fluctuations have a negative effect on the agricultural labor market (Jayachandran, 2006; Jessose et al. 2016; Colmer 2018).
- Impact of public workfare programs on labor market (Doug, 2009; Azam, 2012; Zimmermann, 2012, Imbert and Papp, 2015; Fetzer, 2019)

Contribution to the climate and development literature

- We examine how the existence of public workfare programs moderates the impact of non-linear weather variables on wages and employment sectors.
- We critically examine of the relationship between rainfall variability and wages and employment.
- We use a novel data set that integrates the spatial distribution of agro-climatic variables with nationally available employment and unemployment data at the district level (similar to a US county).

Labor reallocation decision: Set up

Two sectors in a two period model: ag (A) and non-ag (N)The wage of individual i in sector J(J=A,N) is given by:

$$w_i^J = \mu^J + \beta^J \varepsilon_i,$$

Baseline wage depends on climatic determinants, θ , through agricultural productivity. That is,

$$\frac{\partial \mu^A}{\partial \theta} < \frac{\partial \mu^N}{\partial \theta} < 0.$$

Switching cost, $c = c(c_{monetary}, c_{non-monetary})$

$$\mu^{N}(\theta) + \beta^{N} \varepsilon_{i} - c > \mu^{A}(\theta) + \beta^{A} \varepsilon_{i}$$

Rearranging, we get:

$$\varepsilon_i > \frac{\mu^A(\theta) - \mu^N(\theta) + c}{\beta^N - \beta^A}.$$

Labor reallocation constraints: Incentive and Feasibility

Incentive constraint defined as

Share of reallocated workforce =
$$1 - \Phi\left(\frac{\mu^A(\theta) - \mu^N(\theta) + c}{\beta^N - \beta^A}\right)$$
 (1)

Feasibility constraint defined as

Share of reallocated workforce =
$$1 - \Phi\left(\frac{c - \mu^A(\theta)}{\beta^A}\right)$$
 (2)

By taking logarithms and log-linearizing both sides of equations 1 and 2, we obtain the basic empirical equation:

$$ln(ShareEmp) = \alpha + \beta ln(\theta) + \gamma c.$$

Map of study area

Data

- Unit-level data from five rounds of National Sample Surveys on Employment and Unemployment Situation in India (NSS EUS). Survey round Descriptive statistics
- India Human Development Survey (IHDS) two waves conducted in 2004-05 and 2011-12 Plot income distribution
- Weather variables were obtained from NCMRWF and CHIRPS (Plot person-days and rainfall (Plot rainfall anomalies)
 - June-September daily accumulated rainfall
 - June-September daily mean temperature

Empirical Specification: Wages and Employment

Base specification:

Introduction

$$y_{dqt} = \beta_1 f(\theta_{dt}) + \beta_2 T_{dt} + \frac{\beta_3}{3} T_{dt} * f(\theta_{dt}) + \alpha_d + \phi_{st} + \varepsilon_{dqt}$$

 y_{dqt} is the outcome of interest in district d in quarter q in year t; T_{dt} is the dummy variable, 1 if public workfare program is available in district d in year t;

 $f(\theta_{dt})$ is a non-linear function of precipitation and temperature; α_d is a vector of district fixed effects;

 ϕ_{st} is a vector of state-year fixed effects;

 ε_{dqt} represents error terms.

Effects of weather on average daily farm earnings (Rs., log)

	Peak	season	Lean season			
	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun		
Rainfall (Kg/m2, log)	0.147**	-0.026	-0.005	-0.054		
· -, -,	(0.058)	(0.053)	(0.049)	(0.058)		
Degree days (DD)	0.504	-0.418	0.247	-0.202		
,	(0.403)	(0.440)	(0.358)	(0.425)		
Square root Heat DD	0.016*	0.004	-0.015	-0.013		
	(0.008)	(0.006)	(0.009)	(0.009)		
	· · · · · · · · · · · · · · · · · · ·	District and State-year FEs				
Observations	2057	2059	1955	1933		
Number of districts	495	495	490	491		
Conley standard errors in p	parentheses	Result no:	n-agricultural wa	ige rate		

Effects of weather on share of agricultural employment

	Peak	season	Lean season		
	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	
Rainfall (Kg/m2, log)	0.017	0.051**	0.011	0.012	
, ,	(0.025)	(0.024)	(0.021)	(0.030)	
Degree days (DD)	0.261	0.123	-0.048	-0.008	
. ,	(0.199)	(0.164)	(0.156)	(0.196)	
Square root Heat DD	0.008	0.000	0.001	-0.007*	
	(0.005)	(0.004)	(0.005)	(0.004)	
		District	and State-	year FEs	
Observations	2565	2560	2545	2560	
Number of districts	513	512	509	512	
Conley standard errors in p	parentheses	Result shar	re of non-ag emp	loyment	

(0.011)

-0.091

(0.383)

-0.016

(0.037)

0.107

(0.106)

-0.004

(0.007)

1949

(0.011)

0.819**

(0.322)

-0.076**

(0.033)

-0.097

(0.085)

0.004

(0.007)

1945

451

(0.010)

0.174

(0.341)

-0.030

(0.032)

0.002

(0.088)

0.003

(0.006)

1837

434

(0.010)

-0.102

(0.363)

0.034

(0.035)

-0.062

(0.093)

0.011

(0.007)

1805

433

13 / 15

Effe	cts	of	NRE	G on	average	daily	farm	earnings	(Rs., lo	g)
						Jul-	Sep	Oct-Dec	Jan-Mar	A ₁
	D -	: c	- 11 /TZ -	. / 0	1\	0.16	20**	0.002	0.000	

ше	cts of Nite of on average of	лану таги	r earnings	s (168., 10g)
		Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun
	Rainfall (Kg/m2, log)	0.163**	0.003	0.009	-0.073
		(0.070)	(0.064)	(0.061)	(0.062)
	Degree days (thousands)	0.685	-0.391	0.370	-0.230
		(0.449)	(0.489)	(0.446)	(0.471)
	Square root HDD	0.020*	-0.006	-0.019*	-0.017^*

Number of districts 451 Robust standard errors clustered at the district level. Plot Marginal Effects

All regressions include district and state-year FEs.

NREG

 $NREG \times Rainfall (log)$

 $NREG \times Degree days$

Observations

 $NREG \times Square root HDD$

Main Finding:

• In a district-years that have a workfare program available, wages remain higher suggesting the role of insurance.

Future Directions:

- Does workfare programs mitigate the effects of weather induced income shocks? Result Household income
- Explore treatment heterogeneity by gender and climatic zones.

Introduction

Contact email: siddharth.kishore@colostate.edu

https://siddharthkishore.github.io/

Figure: 1. Incidence of drought (rainfall below 20th percentile of long-run historical average) at the district level (based on 2011 India Census district geographic boundaries) between 1901-2016. (Source: CRU)

Estimated coefficient for rainfall deciles on yields

Figure: 2. The dependent variable is the natural logarithm of annual crop yield (kg per hectare) from 2001 to 2015. The specification include non-linear temperature controls, and district and year fixed effects. The 5th decile is selected as reference. (Source: ICRISAT)

Estimated coefficient for rainfall deciles on yields

Figure: 2. The dependent variable is the natural logarithm of annual crop yield (kg per hectare) from 2001 to 2015. The specification include non-linear temperature controls, and district and year fixed effects. The 5th decile is selected as reference. (Source: ICRISAT)

Monthly Employment on Jharkhand's NREG, 2010-11

Figure: 3. Monthly Employment and Rainfall

Agricultural seasons: Peak (Jul-Dec) and Lean (Jan-Jun)

Income distribution for NREG participants and rural population as a whole, India 2004-05

Total Employment provided by National Rural Employment Guarantee (NREG) scheme

Source: Management Information System (MIS), Government of India.

Total Employment provided by National Rural Employment Guarantee (NREG) scheme

Source: Management Information System (MIS), Government of India.

(138.20)

0.54

(0.21)

0.38

(0.19)

0.08

(0.09)

32.14

(4.85)

1178.51

(816.11)

226

23 / 15

(131.26)

0.54

(0.19)

0.38

(0.18)

0.08

(0.09)

32.17

(3.49)

1468.26

(846.31)

120

District Level Descriptive Statistics: Rural India (2004-2012).							
		Overall	Phase 1	Phase 2	Phase 3		
	Daily earnings: Ag (Rs.)	83.97	69.52	83.14	94.71		
		(73.67)	(60.74)	(64.33)	(83.13)		
	Daily earnings: Non-ag (Rs.)	184.24	166.74	187.05	192.73		

Employment share: Ag

Daily Max. Temp. (°C)

Unemployment

Rainfall (Kg/m2)

Number of districts

Employment share: Non-ag

(132.18)

0.54

(0.20)

0.38

(0.18)

0.08

(0.09)

32.08

(4.04)

1296.38

(834.22)

564

Standard deviation in parentheses (Source: NSS EUS data).

(119.67)

0.55

(0.19)

0.37

(0.18)

0.08

(0.09)

32.25

(3.00)

1347.34

(828.73)

195

Distribution of rainfall anomalies, 2004-2011.

Effects of weather on average daily non-farm earnings (Rs., log)

	Peak	season	Lean season		
	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun	
Rainfall (Kg/m2, log)	0.039	0.039	0.119	-0.028	
, _,,	(0.092)	(0.083)	(0.090)	(0.073)	
Degree days (DD)	-0.316	0.934*	1.274**	0.712	
- ,	(0.633)	(0.563)	(0.563)	(0.605)	
Square root of Heat DD	0.024	-0.018	-0.021	0.032^{*}	
	(0.017)	(0.014)	(0.015)	(0.017)	
	District and State-year				
Observations	1953	1960	1955	1956	
Number of districts	513	511	508	512	
Conley standard errors in par	entheses		(return		

Effects of weather on share of non-agricultural employment

	Peak	season	Lean season			
	Jul-Sep	Oct-Dec	Jan-Mar	Apr-Jun		
Rainfall (Kg/m2, log)	-0.003	-0.018	-0.002	-0.021		
	(0.024)	(0.024)	(0.022)	(0.028)		
Degree days (DD)	-0.225	-0.116	0.043	0.027		
	(0.197)	(0.168)	(0.163)	(0.202)		
Square root Heat DD	-0.008*	0.000	-0.001	0.003		
	(0.004)	(0.003)	(0.004)	(0.004)		
		District and State-year FEs				
Observations	2565	2560	2545	2560		
Number of districts	513	512	509	512		
Conley standard errors in p	parentheses					

Average Marginal Effects of NREG on average daily farm earnings in quarter Oct-Dec.

National Sample Survey Employment and Unemployment Situation (NSS EUS) round

	Year
NSS EUS Round	
61	July 2004 - June 2005
62	July 2005 - June 2006
64	July 2007 - June 2008
66	July 2009 - June 2010
68	July 2011 - June 2012
NREG phase-wise roll out	
Phase 1	January 2006
Phase 2	April 2007
Phase 3	April 2008

return

Evidence from household panel data

*	All Households	Ag wage laborers
$Rainfall_{t-1}$ (log)	0.172	0.040
	(0.117)	(0.219)
Degree $days_{t-1}$ (thousands)	-0.837	-0.332
	(0.822)	(1.153)
Square root of HDD_{t-1}	0.051^*	0.060
	(0.030)	(0.067)
NREG	0.046	-0.411
	(0.463)	(1.083)
$NREG \times Rainfall_{t-1} (log)$	-0.025	0.038
	(0.055)	(0.114)
$NREG \times Degree days_{t-1}$	0.118	0.116
	(0.112)	(0.256)
$NREG \times Square root HDD_{t-1}$	-0.010	-0.010
	(0.009)	(0.022)
Observations	52,698	3,838
Number of districts	280	182

Robust standard errors clustered at the district level.
All regressions include household and state-year FEs.