## Air Pollution, Rainfall Variability, and Intimate Partner Violence in India

Siddharth Kishore

School of Public Policy University of California Riverside

#### Violence against women

**Problem: Gender-related violence** negatively affects economic development outcomes:

- Lower female labor market performance in India [Bhalotra et al. 2021], and in Tanzania [McCarthy 2019]
- Less autonomy for Indian women in reproductive health [Stephenson, Jadhav, and Hindin 2013]
- Negative impact on capital investments in children in Turkey [Gulesci et al. 2020]

#### Effects of pollution on interpersonal crime:

- Exposure to air pollution is linked to an increase in **assault** and **violent crimes** in the U.S. [Burkhardt et al. 2019] and the UK [Bondy et al. 2020]
- Pollution has an adverse effect on adult **cognitive** function in China [Chen et al. 2018], and in India [Balakrishnan et al. 2022]

## This Study: Research Question and Results Preview

# How does air pollution impact the incidence and intensity of intimate partner violence?

• Fine Particulate Matter (PM<sub>2.5</sub>): a  $1 \ \mu g/m^3$  increase in PM<sub>2.5</sub> is associated with a **6.1%** increase in the incidence of physical/sexual violence and a **12%** increase in the intensity of physical violence.

#### Why may pollution lead to intimate partner violence?

- **0** Income stress resulting from pollution-induced household level shocks
  - Diminished labor productivity
- **2** Aggression and reduced cognitive ability
  - More time spent indoors as a avoidance behavior leads to more contact time

## Related Literature and Contributions

#### Weather-induced violence against women:

- **Drought** leads to increased violence against women in India (Shekari et al. 2014), and in Sub-Saharan Africa [Cools et al. 2015]
- Rainfall shocks lead to intimate partner violence in Tanzania [Abiona et al. 2018]
- Extreme cold lead to intimate partner violence in Peru [Bollman et al. 2023]

#### Women's employment status and spousal violence:

- Women's access to resources reduces intimate partner violence in Sub-Saharan Africa [Coors et al. 2017]
- Female **employment status** lead to **decrease** in intimate partner violence in India [Yoo-Mi Chin 2011], while Sujargard et al. [2020] shows a **positive** relationship between MGNREGA and spousal violence
- Hypergamy increases intimate partner violence in India [Roychowdhury et al. 2022]

## Research Design: Epidemiological Approach

The probability of a woman i living in a air pollution grid-cell c experiencing a intimate partner violence is given by

$$y_i = f_i(\underline{PM_c}, M_{i(h)}(\underline{PM_c}), \mathbf{W}_c, \mathbf{X}_i, \mathbf{X}_{i(h)}; \varepsilon_i), \text{ where}$$
(1)

- $PM_c$  is the average level of  $PM_{2.5}$  in the grid-cell in the past 12 months
- $M_{i(h)}(PM_c)$  represents income stress that lead to aggressive behavior
- W<sub>c</sub> represents a host of weather variables
- $\mathbf{X}_i$  and  $\mathbf{X}_{i(h)}$  represent individual- and household-level characteristics
- $\varepsilon_i$  are unobserved factors that influence the probability of a woman being exposed to violence
- Identifying assumption,  $\mathbb{E}(Z_c, \varepsilon_i) = 0$  while  $\mathbb{E}(PM_c, \varepsilon_i) \neq 0$ , where  $Z_c$  is an instrument for  $PM_c$

The effect of pollution on IPV, y, conditional on  $\varepsilon_i$ , is

$$\frac{dy_i}{dPM_c} = \underbrace{\frac{\partial f_i}{\partial PM_c}}_{\text{direct effect}} + \underbrace{\frac{\partial f_i}{\partial M_{i(h)}} \frac{\partial M_{i(h)}}{\partial PM_c}}_{\text{indirect effect}}$$
(2)

## Data

- Domestic violence module from the 2015-2016 round of Indian DHS Sample
- CAMS-EAC4 satellite reanalysis air pollution data: PM<sub>2.5</sub>, Ozone, NO<sub>2</sub>, CO, SO<sub>2</sub>, wind speed and direction
- CHIRPS: Daily precipitation and number of dry and wet months (in 36 months prior to the interview)
  Rainfall Variability
- IMDAA: Daily relative humidity and maximum temperature
- NCEP/NCAR reanalysis temperature data at two pressure levels: 1000 hPa and 925 hPa

# Map of the Study Area



Note: The dots represent the average  $PM_{2.5}$  levels (in  $\mu g/m^3$ ) for the past 12 months from the survey period for DHS clusters. The district boundaries are shown in gray.

- There are 513 PM<sub>2.5</sub> grid-cells with an approximate horizontal resolution of 80 Km ( $0.75^{\circ} \times 0.75^{\circ}$ ).
- High concentration of pollution in the Indo-Gangetic plains

## Variables and Descriptive Statistics

#### Variables:

- Outcome variable: Intimate partner violence (IPV) IPV Stat IPV Dist
- Main explanatory variable: Fine Particulate Matter (PM<sub>2.5</sub>) PM<sub>2.5</sub> Dist

#### Covariates:

- Individual-level characteristics: Woman's age, education, working status, husband education, spousal age gap, husband drinking alcohol, husband working status, years of living together, and whether the woman's parents were exposed to IPV
- Household-level characteristics: Rural areas, religion, caste, age of household heads, household wealth index, and cooking fuel
- Nonlinear function of **weather** variables
- Other pollutants: Ozone, NO<sub>2</sub>, CO, and SO<sub>2</sub>
- **DHS cluster-level characteristics:** Purchasing power parity, population density and slope

## Thermal Inversions



(a) Without Inversions, pollutants rise and disburse



#### Source: Arceo et al. 2015

- Distribution of thermal inversions
- Relationship between PM<sub>2.5</sub> and thermal inversions
- Distribution of wind directions
- Relationship between PM<sub>2.5</sub> and monsoon winds



(3)

# Econometric Specification: Two-Stage Least Squares (2SLS) $y_{i} = \beta_{0} + \hat{\beta_{1}} P M_{i(c,y)} + \hat{W}_{i(c,y)} \psi + X_{i} \xi + X_{i(h)} \lambda + \eta_{i(cm)} + \phi_{i(cs)} + \pi_{i(y)} + v_{i}, \text{ where }$

#### First stage:

$$PM_{i(c,y)} = \gamma_0 + \gamma_1 T I_{i(c,y)} + \gamma_2 N E_{i(c,y)} + \gamma_3 S W_{i(c,y)} + \gamma_4 N W_{i(c,y)} + \mathbf{W}_{i(c,y)} \psi + \mathbf{X}_i \xi + \mathbf{X}_{i(h)} \lambda + \eta_{i(cm)} + \phi_{i(cs)} + \pi_{i(y)} + u_i$$
(4)

- $y_i = 1$  if woman *i* living in grid-cell *c* experienced IPV in past 12 months of survey year y, 0 otherwise
- $PM_{i(c,u)}$  12 months average level of  $PM_{2.5}$  in the grid-cell before the survey year y
- $TI_{i(c,y)}$  represent the average strength of inversion at midnight in the past 12 months
- $NE_{i(c,y)}$ ,  $SW_{i(c,y)}$ , and  $NW_{i(c,y)}$  represent the number of days in the past 12 months when the wind was blowing at midnight in that direction
- $W_{i(c,y)}$  is a host of weather controls in the past 12 months
- $X_i$  and  $X_{i(h)}$  represent vector of individual- and household-level controls
- $\eta_{i(cm)}, \phi_{i(cs)}, \text{ and } \pi_{i(y)}$  are grid-cell-by-month, grid-cell-by-state, and survey year fixed effects
- Standard errors are clustered at the grid-cell level

## Threats to Identification

Identification Concern 1: Pollutant correlation

Correlation Matrix

• Include all pollutants in regression to isolate effects

Identification Concern 2: Covariation between pollution and weather (PM2.5)

- Include a quadratic function for precipitation, wind speed, and relative humidity
- Number of days in the previous 12 months for each temperature bin

Identification Concern 3: Measurement errors on observables

- Not fully accounting for husband's pollution exposure, as men migrate outside the village in search of work
  - Analysis at a larger spatial scale may possibly capture them

#### Impact of PM<sub>2.5</sub> on Incidence of Intimate Partner Violence



| Dependent               | Physical/sexual     | Physical      | Severe physical    | Sexual   |
|-------------------------|---------------------|---------------|--------------------|----------|
| variable:               | violence            | violence      | violence           | violence |
| Binary $(0/1)$          | [1]                 | [2]           | [3]                | [4]      |
| Panel A: OLS estimates  | ;                   |               |                    |          |
| $PM_{2.5}(\mu g/m^3)$   | $0.038^{***}$       | $0.049^{***}$ | $0.009^{*}$        | 0.004    |
|                         | (0.012)             | (0.010)       | (0.006)            | (0.008)  |
| Panel B: IV estimates u | using air temperatu | re inversior  | and wind direction | ons      |
| $PM_{2.5}(\mu g/m^3)$   | $0.061^{***}$       | $0.065^{***}$ | -0.001             | 0.012    |
|                         | (0.019)             | (0.013)       | (0.009)            | (0.014)  |
| Grid-cell x month FEs   | Yes                 | Yes           | Yes                | Yes      |
| Grid-cell x state FEs   | Yes                 | Yes           | Yes                | Yes      |
| Survey year FEs         | Yes                 | Yes           | Yes                | Yes      |
| First-stage (F-test)    | 17.91               | 17.91         | 17.91              | 17.91    |
| Observations            | 56,806              | $56,\!806$    | 56,806             | 56,806   |
| R-square                | 0.115               | 0.110         | 0.054              | 0.036    |

Note: Levels of significance:  $p < 0.01^{***}$ ,  $p < 0.05^{**}$ ,  $p < 0.10^*$ . Robust standard errors in parentheses are clustered at the grid-cell level. All regressions include individual-and household-level, and cluster-level controls, as well as weather controls. Number of grid-cells is 512.

#### Nonlinear Effects of PM<sub>2.5</sub> on Incidence of Physical/Sexual Violence



Nonlinear OLS Model:

$$y_{i} = \beta_{0} + \sum_{n=1}^{6} \beta_{n} \times 1[Bin_{n}(PM_{2.5})] + \mathbf{W}_{i(c,y)}\psi + \mathbf{X}_{i}\xi + \mathbf{X}_{i(h)}\lambda + \eta_{i(cm)} + \Phi_{i(s)} + \pi_{i(y)} + \mu_{i(s)} + \mu_{i$$

• Satisfactory (31-60,  $\mu g/m^3$ ), moderate (61-90), and poor (91-120) levels of PM<sub>2.5</sub> are associated with the incidence of physical/sexual violence

#### Impact of PM<sub>2.5</sub> on Intensity of Intimate Partner Violence

First stage

| Dependent             | Physical/sexual     | Physical      | Severe physical | Sexual   |
|-----------------------|---------------------|---------------|-----------------|----------|
| variable:             | violence            | violence      | violence        | violence |
| Count of violence     | [1]                 | [2]           | [3]             | [4]      |
| Panel A: Maximum Lik  | elihood Poisson est | timates       |                 |          |
| $PM_{2.5}(\mu g/m^3)$ | $1.637^{**}$        | $0.126^{***}$ | 0.010           | -0.067   |
|                       | (0.046)             | (0.041)       | (0.112)         | (0.050)  |
| Panel B: Maximum Lik  | elihood Control Fu  | nction Poiss  | son estimates   |          |
| $PM_{2.5}(\mu g/m^3)$ | 0.090               | $0.120^{**}$  | $11.988^{**}$   | -0.131   |
|                       | (0.063)             | (0.056)       | (1.198)         | (0.154)  |
| First-stage residuals | 0.039               | 0.022         | $-0.970^{**}$   | 0.093    |
|                       | (0.162)             | (0.179)       | (1.738)         | (0.156)  |
| Grid-cell x month FEs | Yes                 | Yes           | Yes             | Yes      |
| Grid-cell x state FEs | Yes                 | Yes           | Yes             | Yes      |
| Survey year FEs       | Yes                 | Yes           | Yes             | Yes      |
| Observations          | 54,934              | $54,\!593$    | $46,\!653$      | 46,773   |
| Pseudo R-square       | 0.212               | 0.185         | 0.184           | 0.185    |

Note: Levels of significance:  $p < 0.01^{***}$ ,  $p < 0.05^{**}$ . Marginal coefficients are reported. Robust standard errors in parentheses are clustered at the grid-cell level. All regressions include individual- and household-level, and cluster-level controls, as well as weather controls.

#### Heterogeneous Marginal Effects: Air Pollution Effects on IPV

| Data                               | Incidence of IPV | Intensity of IPV         |
|------------------------------------|------------------|--------------------------|
|                                    | [1]              | [2]                      |
| Overall sample                     | $0.061^{***}$    | 0.090                    |
|                                    | [56, 806]        | [54, 934]                |
| Poor household sample              | 0.036            | -0.607***                |
|                                    | [23, 311]        | [22,316]                 |
| Non-poor household sample          | $0.094^{***}$    | 0.742***                 |
|                                    | [33, 318]        | [31,048]                 |
| Cooking with emitting fuels sample | 0.103            | $-0.426^{***}$           |
|                                    | [34, 324]        | [32, 816]                |
| Wife beating justified sample      | 0.049**          | -0.162                   |
|                                    | [28, 343]        | [27,120]                 |
| Estimates                          | IV               | Control Function Poisson |

Note: Observations are presented in the square brackets. Column 1 and 2 report the marginal effects. The dependent variable in column 1 is whether the woman experienced intimate partner violence (IPV), while in column 2, the count of incidents of spousal violence. Levels of significance:  $p < 0.01^{***}$  and  $p < 0.05^{**}$ .

#### Possible Mechanisms

- Pollution has a **negative** impacts on output through labor supply and productivity
  - Labor supply responses to pollution in Peru [Aragón et al. 2017], in Mexico [Hanna & Olivia 2015], and an increase in sick days in Spain [Holub et al. 2021]
  - Effects of pollution on **worker productivity** in U.S. [Graff Zivin & Neidell 2012; Chang et al. 2016], in China [Chang et al. 2019], and in India [Adhvaryu et al. 2019; Batheja et al. 2023; Merfeld 2023]

- **2** Effects of pollution on **aggressive behavior** through neuroinflammation and reduced serotonin production
  - Less time spent outside on days with higher pollution levels in India [Jafarov et al. 2023]

## Concluding Remarks

- Key findings: A causal link between PM<sub>2.5</sub> and IPV in India
  - Satisfactory, moderate, and poor pollution days have a correlation with the incidence of physical/sexual violence
  - Analysis of heterogeneous impacts suggests that the main results are driven by non-poor households and women who justify wife beating.

- **Policy implications:** Aim to formulate context-relevant **targeted** programs and policy responses to reduce violence against women.
  - Adds to the **social cost** of pollution, which was previously absent from the true cost of pollution.
  - Spark a greater interest in **environmental regulations**

#### Please reach out with comments/questions

siddhark@ucr.edu

# Round four of the Demographic and Health Survey (2015-2016)

| Year  | Observations | Villages | Districts |
|-------|--------------|----------|-----------|
| (1)   | (2)          | (3)      | (4)       |
| 2015  | 27,713       | 4,406    | 328       |
| 2016  | 29,265       | 4,819    | 310       |
| Total | 56,978       | 9,218    | 633       |



#### Distribution of Thermal Inversions



where 
$$\theta_{i(c)} = T_{i(c)}^{1000hpa} - T_{i(c)}^{925hpa}$$

## Time Trend of $PM_{2.5}$ and Thermal Inversions



• In the interview month, the figure shows the average PM<sub>2.5</sub> and the continuous difference in air temperature in absolute terms over the past 12 months

3 / 15

## Time Trend of $PM_{2.5}$ and Monsoon Winds



- In the interview month, the figure displays the average PM<sub>2.5</sub> and monsoon winds days in the past 12 months
- India receives southwest monsoon winds in summer and northeast monsoon winds in winter



## **Rainfall Variablility**



(a) Number of dry months

(b) Number of wet months

Dry months<sub>i</sub> = 
$$\begin{cases} 1, & \text{if } r_i^m < \bar{r_i} - \sigma_i \\ 0, & \text{if otherwise} \end{cases}$$

Wet months<sub>i</sub> = 
$$\begin{cases} 1, & \text{if } r_i^m > \bar{r_i} + \sigma_i \\ 0, & \text{if otherwise} \end{cases}$$

|                      | Observations | Mean | SD   | Min | Max |
|----------------------|--------------|------|------|-----|-----|
| Number of dry months | 56,825       | 2.95 | 2.19 | 0   | 14  |
| Number of wet months | 56,825       | 6.59 | 3.00 | 0   | 18  |

#### Summary statistics of rainfall variability

## Distribution of Wind Directions



Number of days during the past 12 months when the wind was blowing at midnight in the direction of the NE(0° - 90°), SE(90° - 180°), SW(180° - 270°), and NW(270° - 360°)

## Correlation Matrix of Coefficients of OLS Model

| Pollutants | $PM_{2.5}$ | Ozone | $NO_2$ | СО    | $SO_2$ |
|------------|------------|-------|--------|-------|--------|
| $PM_{2.5}$ | 1          |       |        |       |        |
| Ozone      | 0.16       | 1     |        |       |        |
| $NO_2$     | -0.63      | -0.42 | 1      |       |        |
| CO         | 0.11       | -0.26 | -0.27  | 1     |        |
| $SO_2$     | -0.56      | -0.43 | 0.19   | -0.45 | 1      |

• The correlation matrix is obtained by regressing the IPV on pollutants, controlling for grid-cell-by-month and survey year fixed effects.



## $PM_{2.5}$ and Weather Bin Scatterplot



- Maximum temperature and wind speed have a **positive** correlation with  $\mathrm{PM}_{2.5}$
- PM<sub>2.5</sub> is **negatively** correlated with precipitation and relative humidity

Back

## Kernel Density Estimate



• PM<sub>2.5</sub> distribution from satellite reanalysis is **positively** skewed

Back

# First stage regression

|                           | $PM_{2.5}$    |
|---------------------------|---------------|
| Air temperature inversion | 0.013         |
|                           | (0.012)       |
| NE winds                  | $0.319^{***}$ |
|                           | (0.121)       |
| SW winds                  | $0.264^{***}$ |
|                           | (0.099)       |
| NW winds                  | 0.230         |
|                           | (0.190)       |
| Controls                  | Yes           |
| Grid-cell x month FEs     | Yes           |
| Grid-cell x state FEs     | Yes           |
| Survey year FEs           | Yes           |
| Observations              | 56,806        |
| F stat (K-P)              | 17.91         |



# First stage regression

|                           | $PM_{2.5}$    |
|---------------------------|---------------|
| Air temperature inversion | 0.013         |
|                           | (0.011)       |
| NE winds                  | $0.348^{**}$  |
|                           | (0.136)       |
| SW winds                  | $0.263^{***}$ |
|                           | (0.097)       |
| NW winds                  | 0.267         |
|                           | (0.193)       |
| Controls                  | Yes           |
| Grid-cell x month FEs     | Yes           |
| Grid-cell x state FEs     | Yes           |
| Survey year FEs           | Yes           |
| Observations              | 56,806        |
| F stat                    | 104.56        |



# Descriptive Statistics on Intimate Partner Violence (N = 56,978)

|                          | Mean | SD   | Min | Max |
|--------------------------|------|------|-----|-----|
| Physical/sexual violence | 0.24 | 0.43 | 0   | 1   |
| Physical violence        | 0.23 | 0.42 | 0   | 1   |
| Severe physical violence | 0.07 | 0.25 | 0   | 1   |
| Sexual violence          | 0.06 | 0.23 | 0   | 1   |



# Distribution of cases of IPV



Back

# Distribution of $PM_{2.5}$



Summary statistics of PM<sub>2.5</sub>

|                       | Observations | Mean  | SD    | Min  | Max    |
|-----------------------|--------------|-------|-------|------|--------|
| $PM_{2.5}(\mu g/m^3)$ | 56,978       | 83.99 | 47.77 | 5.80 | 262.93 |

# Sensitivity Checks

| Dependent variable: Incidence of IPV $(0/1)$ | Coef.        | SE    |
|----------------------------------------------|--------------|-------|
| Panel A: Alternative Instruments             |              |       |
| Air temperature inversion                    | 0.003        | 0.085 |
| Number of inversion                          | 0.058        | 0.120 |
| Wind directions                              | $0.028^{**}$ | 0.013 |
| Observations                                 | 56,806       |       |
| Estimates                                    | IV           |       |

